An insight on the (Hindu’s) unified quantum cosmology

  • Authors

    • Satya Seshavatharam UV. I-SERVE, Hyderabad, AP, India.Sr. Engineer, QA-DIP, Lanco Industries Ltd, Tirupati, AP, India.
    • Lakshminarayana S. Andhra university, India
    2015-08-02
    https://doi.org/10.14419/ijaa.v3i2.5025
  • Planck Scale, Modern Cosmology, Hindu Cosmology, Initial Light Speed Expansion, Very Slow Deceleration, Continuous Light Speed Rotation, Cosmic Temperature, Quantum Gravity.
  • Abstract

    In the heuristic approach, with reference to ‘conservation of energy’, ‘initial light speed expansion’, ‘continuous light speed rotation’, ‘Kerr-Schwarzschild radius’, ‘conservation of centripetal force’, ‘Planck scale’, ‘quantum gravity’ and ‘Hindu model of cosmic age’, we introduce a heuristic ‘model of cosmology’. The authors would like to stress the fact that, ‘with light speed rotation’ qualitatively ‘Hubble parameter’ and ‘angular velocity’ both can be shown to be secondary physical constants and their individual roles can be shown to be similar. With five unified, simplified and workable assumptions, a number of useful cosmological formulae can be generated. With reference to current microwave back ground temperature obtained magnitude of current Hubble parameter is accurately fitting with the recommended value. With the proposed assumptions:1) the intended purpose of ‘lambda’ term can be understood and in future it can be relinquished. 2) Cosmic acceleration and dark energy concepts can be relinquished at fundamental level. 3) Cosmic flatness can be well understood.4) Comic ‘horizon problem’ can be eliminated at fundamental level. In future, either from ‘academic interest’ point of view or from ‘serious research’ point of view, this model can be recommended for in depth analysis at fundamental level.

  • References

    1. [1] U.V.S. Seshavatharam and S. Lakshminarayana. Toy model of Evolving Spherical Cosmology with Flatness, Angular Velocity, Temperature and Redshift. Frontiers of Astronomy, Astrophysics and Cosmology, vol. 1, no. 2 pp.90-97 (2015)

      [2] Ebenezer Burgess. Translation of the Surya Siddhanta, a text-book of Hindu Astronomy. Journal of the American Oriental Society 6, pp 141- 498 (1860) http://dx.doi.org/10.2307/592174.

      [3] Kedar Nath Shukla. Surya Siddhanta. D.K.Print world (P) Ltd. 1st edition. (2014)

      [4] Nielsen. J.T et al. Marginal evidence for cosmic ac-celebration from Type IA supernovae. arXiv:1506.01354v2 (2015)

      [5] Jun-Jie Wei et al. A Comparative Analysis of the Supernova Legacy Survey Sample with ΛCDM and the Rh=ct Universe. The Astronomical Journal 149 102. (2015) http://dx.doi.org/10.1088/0004-6256/149/3/102.

      [6] F. Melia and R. S. Maier, Cosmic Chronometers in the Rh=ct Universe. Mon.Not.Roy.Astron.Soc. 432, 2669 (2013) http://dx.doi.org/10.1093/mnras/stt596 .

      [7] Mitra, A. Energy of Einstein's static universe and its implications for the Λ CDM cosmology. JCAP. 03: 007. (2013).

      [8] Mitra, S. Bhattacharyya and N. Bhatt, LCDM Cosmology through the Lens of Einstein's Static Universe, the Mother of Λ. Int. J.Mod. phys. D 22, No.2, 1350012 (2013) http://dx.doi.org/10.1142/S0218271813500120.

      [9] Steinhardt, P.J. The inflation debate: Is the theory at heart of modern cosmology deeply flawed? Scientific American, 304(4) pp. 18-25. (2011).http://dx.doi.org/10.1038/scientificamerican0411-36.

      [10] Hawking, Stephen W. Quantum cosmology. In Hawking, Stephen W.; Israel, Werner. 300 Years of Gravitation. Cambridge University Press. pp. 631–651. (1987).

      [11] W.M. Stuckey. The observable universe inside a black hole. Am. J. Phys. 62, 788 (1994)http://dx.doi.org/10.1119/1.17460.

      [12] Tatum, E. T. U. V. S. Seshavatharam and S. Lakshminarayana. The basics of flat space cosmology. International journal of Astronomy and Astrophysics, 5, pp.116-124 (2015).

      [13] Peebles, P. J. E. and Ratra, Bharat. The cosmological constant and dark energy. Reviews of Modern Physics 75 (2): 559–606 (2003)http://dx.doi.org/10.1103/RevModPhys.75.559.

      [14] Guth, A.H. The Inflationary Universe. Basic Books, New York, US. (1997).

      [15] Guth, A.H.Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D23: 347. (1981). http://dx.doi.org/10.1103/PhysRevD.23.347.

      [16] Sivaram, C., and Arun, K. Primordial rotation of the universe, hydrodynamics, vortices and angular momenta of celestial objects. The Open Astronomy Journal, vol. 5, 7-11. (2012). http://dx.doi.org/10.2174/1874381101205010007.

      [17] Yan Xu et al. Rings and Radial Waves in the Disk of the Milky Way. ApJ 801 105 (2015) http://dx.doi.org/10.1088/0004-637X/801/2/105.

      [18] Michael Longo. Detection of a dipole in the handedness of spiral galaxies with redshifts z ∼ 0.04. Physics Letters B 699 (2011) 224–229 http://dx.doi.org/10.1016/j.physletb.2011.04.008.

      [19] E.T. Whittaker, Spin in the universe, Yearbook of Roy. Soc. Edinburgh 5-13. (1945).

      [20] Yuri N. Obukhov, on physical foundations and observational effects of cosmic Rotation. In Colloquium on Cosmic Rotation, Eds M. Scherfner, T. Chrobok and M. Shefaat (Wissenschaft und TechnikVerlag: Berlin, pp23-96, 2000. arXiv:astro-ph/0008106v1 (7 Aug 2000).

      [21] Lukasz Andrzej Glinka. Global One-Dimensionality Conjecture within Quantum General Relativity. Gravi-tation and Cosmology 16(1), pp. 7-15 (2010). http://dx.doi.org/10.1134/S0202289310010020.

      [22] Martin Bojowald. Quantum Cosmology. A Funda-mental Description of the Universe. (Lecture Notes in Physics).' Vol. 835. Springer, (2011).

      [23] Hawking, S.W. Particle creation by black holes. Commun. Math. Phys., v.43, 199–220. (1975).http://dx.doi.org/10.1007/BF02345020.

      [24] Planck Collaboration: Planck 2015 results. XIII. Cosmological parameters. http://arxiv.org/abs/1502.01589. (2015).

      [25] Fixsen, D.J. The Temperature of the Cosmic Micro-wave Background. APJ. 707: 916. (2009).http://dx.doi.org/10.1088/0004-637X/707/2/916.

      [26] Milgrom, M.A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270: 365-370. (1983).http://dx.doi.org/10.1086/161130.

      [27] J. R. Brownstein and J. W. Moffat. Galaxy rotation curves without non-baryonic dark matter. Astro-phys.J.636:721-741. (2006).http://dx.doi.org/10.1086/498208.

      [28] Edmund A. Chadwick et al. A gravitational theoretical development supporting MOND. Phys.Rev. D88, 2, 024036. (2013).

      [29] Hubble, E.P.A relation between distance and radial velocity among extra-galactic nebulae. PNAS. vol. 15: pp.168-173. (1929).http://dx.doi.org/10.1073/pnas.15.3.168.

      [30] Hubble, E.P. The 200-inch telescope and some problems it may solve. PASP, 59: pp. 153-167. (1947).http://dx.doi.org/10.1086/125931.

      [31] Perlmutter, S. et al. Measurements of the Cosmological Parameters Ω and Λ from the First Seven Supernovae at z ≥ 0.35. Astrophysical Journal 483 (2): 565. (1997).http://dx.doi.org/10.1086/304265.

      [32] Dicke.R.H. Gravitation and the universe. American Philosophical Society.(1970).

      [33] U. V. S. Seshavatharam and Lakshminarayana S. A brief report on scale independent quantum cosmology. Review of Advances in Physics Theories and Applications. 2(1): 1-9. (2015).

      [34] Tatum, E. T. U. V. S. Seshavatharam and S. Lakshminarayana. Thermal radiation redshift in flat space cosmology. Journal of Applied Physical Science international. Vol 4, Issue 1, pp.18-26 (2015).

      [35] Tatum, E.T. Could Our Universe Have Features of a Giant Black Hole? Journal of Cosmology, 25, 13063-13080. (2015a).

      [36] Tatum, E.T. How a Black Hole Universe Theory Might Resolve Some Cosmological Conundrums. Journal of Cosmology, 25, 13081-13111. (2015b).

  • Downloads

  • How to Cite

    UV., S. S., & S., L. (2015). An insight on the (Hindu’s) unified quantum cosmology. International Journal of Advanced Astronomy, 3(2), 69-77. https://doi.org/10.14419/ijaa.v3i2.5025

    Received date: 2015-07-02

    Accepted date: 2015-07-23

    Published date: 2015-08-02