Quantum gravitational applications of nuclear, atomic and astrophysical phenomena

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    By following the old concept of “gravity is having a strong coupling at nuclear scale” and considering the ‘reduced Planck’s constant’ as a characteristic quantum gravitational constant, in this letter we suggest that: 1) There exists a gravitational constant associated with strong interaction, Gs~3.328x1028 m3/kg/sec2. 2) There also exists a gravitational constant associated with electromagnetic interaction, Ge~2.376x1037 m3/kg/sec2.Based on these two assumptions, in a quantum gravitational approach, an attempt is made to understand the basics of final unification with various semi empirical applications like melting points of elementary particles, strong coupling constant, proton-electron mass ratio, proton-neutron stability, nuclear binding energy, neutron star’s mass and radius, Newtonian gravitational constant, Avogadro number and molar mass unit. With further research and investigation, a practical model of ‘quantum gravitational string theory’ can be developed.

  • Keywords

    Quantum Gravity; Strong Interaction; Electromagnetic Interaction; Newtonian Gravitational Constant, Schwarzschild Interaction Strength, Neutron Star, Avogadro number and Molar Mass Unit.

  • References

      [1] W. Lerche. Recent Developments in String Theory. CERN-TH/97-299. Proceedings of the XVIII International Symposium on Lepton Photon Interactions XVIII International Symposium on Lepton Photon Interactions, Hamburg, July 1997. arxiv:hep-th/9710246.

      [2] Juan M. Maldacena. Gravity, Particle Physics and Their Unification. Int.J.Mod.Phys. A15S1 840-852 (2000)

      [3] S. Schlamminger and R.D. Newman. Recent measurements of the gravitational constant as a function of time. Phys. Rev. D 91, 121101 (2015)http://dx.doi.org/10.1103/PhysRevD.91.121101.

      [4] J. B. Fixler et al. Atom Interferometer Measurement of the Newtonian Constant of Gravity, Science 315 (5808): 74–77 (2007)http://dx.doi.org/10.1126/science.1135459.

      [5] G. Rosi, et al. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature 510, 518-521. (2014)http://dx.doi.org/10.1038/nature13433.

      [6] Terry Quinn, Harold Parks, Clive Speake and Richard Davis. An uncertain big G.Phys.Rev. Lett. 112.068103. (2013)

      [7] George T Gillies. The Newtonian gravitational constant: recent measurements and related studies. Rep. Prog. Phys. 60 151, (1997)http://dx.doi.org/10.1088/0034-4885/60/2/001.

      [8] J Stuhler, M Fattori, T Petelski and G M Tino. MAGIA using atom interferometry to determine the Newtonian gravitational constant. J. Opt. B: Quantum Semiclass. Opt. 5 S75–S81 (2003)http://dx.doi.org/10.1088/1464-4266/5/2/361.

      [9] Roberto Onofrio. On Weak Interactions as Short- Distance Manifestations of Gravity. Modern Physics Letters A, Vol. 28, No. 7 1350022 (2013a) http://dx.doi.org/10.1142/S0217732313500223.

      [10] Roberto Onofrio. Proton radius puzzle and quantum gravity at the Fermi scale. EPL 104, 20002 (2013b)http://dx.doi.org/10.1209/0295-5075/104/20002.

      [11] Abdus Salam. Strong Interactions, Gravitation and Cosmology. Publ. in: NATO Advanced Study Institute, Erice, June16-July 6, 1972.

      [12] Salam A, Sivaram C. Strong Gravity Approach to QCD and Confinement. Mod. Phys. Lett., A8(4), 321- 326. (1993)http://dx.doi.org/10.1142/S0217732393000325.

      [13] Recami E and V. T. Zanchin. The strong coupling constant: its theoretical derivation from a geometric approach to hadron structure. Foundations of Physics letters, vol-7, no.1, pp. 85-93.(1994).

      [14] C. Sivaram and K. P. Sinha. Strong gravity, black holes, and hadrons. Phys. Rev. D 16 (1975).

      [15] C. J. Ishame et al, f-Dominance of Gravity. Phys. Rev. D 3 867. (1971)http://dx.doi.org/10.1103/PhysRevD.3.867.

      [16] K. Tennakone. Electron, muon, proton, and strong gravity. Phys. Rev. D 10(1974) 1722http://dx.doi.org/10.1103/PhysRevD.10.1722.

      [17] C. Sivaram et al. Gravitational charges, f-gravity and hadron masses. Pramana. Vol 2, No 5, pp229-238 (1974)http://dx.doi.org/10.1007/BF02847078.

      [18] C. Sivaram and K. P. Sinha, Strong spin-two interaction and general relativity. Phys. Rep. 51 111(1979)http://dx.doi.org/10.1016/0370-1573(79)90037-1.

      [19] C. Sivaram et al. Gravity of Accelerations on Quantum Scales and its consequences. http://arxiv.org/abs/1402.5071(2013)

      [20] UshaRaut and K.P. Sinha. Strong gravity and the Fine structure constant. Proc. Indian Natn. Sci.Acad. 49 A, No 2, pp. 352-358 (1983)

      [21] K.P.Krishna. Gauge theories of weak and strong gravity. Pramana. Vol 23, No 2, pp205-214 (1984)http://dx.doi.org/10.1007/BF02846517.

      [22] V. De. Sabbata and C. Sivaram. Strong Spin-Torsion Interaction between Spinning Protons. IL NuovoCimento Vol. 101 A, No 2, pp.273-283, (1989)

      [23] Recami E. Elementary Particles as Micro-Universes, and “Strong Black-holes”: A Bi-Scale Approach to Gravitational and Strong Interactions. Preprint NSF-ITP- 02-94. Posted in the arXives as the e-print physics/0505149, and references therein.

      [24] P. Caldirola, M. Pavsic and Recami E. Explaining the Large Numbers by a Hierarchy of Universes: A Unified Theory of Strong and Gravitational Interactions. IL NuovoCimento Vol. 48 B, No. 2, 11 (1978)

      [25] V. T. Zanchin and Recami E. Regge like relations for stable (non-evaporating) black holes. Foundations of Physics letters, vol-7, no.2, pp.167-179 (1994).

      [26] S. I. Fisenko, M. M. Beilinson and B. G. Umanov. Some notes on the concept of strong gravitation and possibilities of its experimental investigation. Physics Letters A, Vol-148, Issues 8-9, pp 405-407. (1990)

      [27] M. Kumar and S. Sahoo. Elementary Particles as Black Holes and Their Binding Energies. The African Review of Physics 8:0025. pp. 165-168 (2013)

      [28] David Gross, Einstein and the search for Unification. Current science, Vol. 89, No. 12, 25 (2005).

      [29] U. V. S. Seshavatharam and S. Lakshminarayana. Nucleus in Strong nuclear gravity. Proceedings of the DAE Symp. On Nucl. Phys. 56: 302 (2011)

      [30] U. V. S. Seshavatharam, Lakshminarayana S. Lakshminarayana. To Validate the Role of Electromagnetic and Strong Gravitational Constants via the Strong Elementary Charge. Universal Journal of Physics and Application 9(5): 210-219 (2015) http://dx.doi.org/10.13189/ujpa.2015.090503.

      [31] U. V. S. Seshavatharam et al. On Fundamental Nuclear Physics & Quantum Physics in Light of a Plausible Final Unification.Prespacetime Journal, Vol 6, Issue 12, pp. 1451-1468 (2015)

      [32] U. V. S. Seshavatharam, Lakshminarayana S. To confirm the existence of nuclear gravitational constant, open Science Journal of Modern Physics. 2(5): 89-102 (2015)

      [33] U. V. S. Seshavatharam, Lakshminarayana S. Final unification with Schwarzschild’s Interaction. Journal of Applied Physical Science International 3(1): 12-22 (2015).

      [34] U. V. S. Seshavatharam and S. Lakshminarayana. Analytical estimation of the gravitational constant with atomic and nuclear physical constants. Proceedings of the DAE-BRNS Symp. onNucl. Phys. 60: 850, (2015).

      [35] U. V. S. Seshavatharam and S. Lakshminarayana. Understanding nuclear structure with Schwarzschild interaction and Avogadro number. Proceedings of the DAE-BRNS Symp. OnNucl. Phys. 60”852 (2015)

      [36] U. V. S. Seshavatharam and S. Lakshminarayana. Semi empirical procedure for estimating the Newtonian gravitational constant with elementary physical constants and Avogadro number. Proceedings of International Intradisciplinary Conference on the Frontiers of Crystallography (IICFC-2014). pp.47- 60 (2015)

      [37] U. V. S. Seshavatharam and S. Lakshminarayana. Applications of gravitational model of possible final unification in both large and small scale physics. Prespacetime journal, Vol 7, issue2, 300-316 (2016).

      [38] Roger Penrose. Chandrasekhar, Black Holes, and Singularities. J. Astrophys. Astr. 17, pp. 213-231(1996)http://dx.doi.org/10.1007/BF02702305.

      [39] Subrahmanyan Chandrasekhar. On Stars, Their Evolution and Their Stability. Nobel Prize lecture, (8 December 1983).

      [40] G W Gibbons. The Maximum Tension Principle in General relativity. Found.Phys.32:1891-1901 (2002)


      [41] Michael R.R. Good and Yen Chin Ong. Are Black Holes Springy? Phys. Rev. D 91, 044031 (2015) http://dx.doi.org/10.1103/PhysRevD.91.044031.

      [42] Hawking, S.W. Particle Creation by Black Holes. Commun.Math. Phys., 43: 199–220 (1975).http://dx.doi.org/10.1007/BF02345020.

      [43] AbhasMitra. Why gravitational contraction must be accompanied by emission of radiation in both Newtonian and Einstein gravity. Phys. Rev. D 74, 024010 (2006)http://dx.doi.org/10.1103/PhysRevD.74.024010.

      [44] AbhasMithra and K.K.Singh. The mass of the Oppenheimer-Synder- black hole: only finite mass quasi-black holes. International Journal of Modern Physics D Vol. 22, No. 9 (2013).

      [45] K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014)http://dx.doi.org/10.1088/1674-1137/38/9/090001.

      [46] Geiger H, Marsden E. On a diffuse reaction of the particles. Proc. Roy. Soc., Ser. A 82: 495-500, (1909)http://dx.doi.org/10.1098/rspa.1909.0054.

      [47] H. Yukawa. On the Interaction of Elementary Particles. Proc. Phys. Math. Soc. Jap. 17 (48) (1935)

      [48] Robert Hofstadter, Rudolf Mössbauer. The electron-scattering method and its application to the structure of nuclei and nucleons. Nobel Lecture, December 11, (1961)

      [49] P.J. Mohr, B.N. Taylor, and D.B. Newell. CODATA Recommended Values of the Fundamental Physical Constants: 2010” by in Rev. Mod. Phys. 84, 1527 (2012) http://dx.doi.org/10.1103/RevModPhys.84.1527.

      [50] CE.Carlson.The proton radius puzzle. Accepted invited review for Progress in Particle and Nuclear Physics.http://arxiv.org/pdf/1502.05314.pdf.

      [51] Chowdhury, P.R. et al. Modified Bethe-Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A20 p.1605-1618. (2005).http://dx.doi.org/10.1142/S021773230501666X.

      [52] N.Ghahramany et al. New approach to nuclear binding energy in integrated nuclear model. Journal of Theoretical and Applied Physics 6:3 (2012).http://dx.doi.org/10.1186/2251-7235-6-3.

      [53] V. Khachatryan et al. (CMS Collaboration), Evidence for Collective Multiparticle Correlations in p−Pb Collisions, Phys. Rev. Lett. 115, 012301 (2015)http://dx.doi.org/10.1103/PhysRevLett.115.012301.

      [54] ATLAS Collaboration, Observation of Associated Near-Side and Away-Side Long-Range Correlations in √sNN=5.02 TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110, 182302 (2013)http://dx.doi.org/10.1103/PhysRevLett.110.182302.

      [55] CMS Collaboration, Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724,213 (2013)http://dx.doi.org/10.1016/j.physletb.2013.06.028.

      [56] W.A. Zajc .The Fluid Nature of Quark-Gluon Plasma. Nucl.Phys.A805:283-294, (2008)http://dx.doi.org/10.1016/j.nuclphysa.2008.02.285.

      [57] Chandrasekhar, S. The Highly Collapsed Configurations of a Stellar Mass. Monthly Notices of the Royal Astronomical Society, 95, 207-225 (1935)http://dx.doi.org/10.1093/mnras/95.3.207.

      [58] Bombaci, I. The Maximum Mass of a Neutron Star. Astronomy and Astrophysics, 305, 871-877. (1996)

      [59] Srinivasan, G. The Maximum Mass of Neutron Stars. Bulletin of Astronomic Society of India, 30, 523-547. (2002) http://dx.doi.org/10.1007/s001590200016.

      [60] James M. Lattimer. The Nuclear Equation of State and Neutron Star Masses. Annu. Rev. Nucl. Part. Sci. 62:485–515 (2012)http://dx.doi.org/10.1146/annurev-nucl-102711-095018.

      [61] N. Chamel et al. On the Maximum Mass of Neutron Stars. Int. J. Mod. Phys. E 22, 1330018 (2013) http://dx.doi.org/10.1142/S021830131330018X.

      [62] SebastienGuillot et al. Measurement of the Radius of Neutron Stars with High S/N Quiescent Low-mass X-ray Binaries in Globular Clusters. Astrophys.J. 772 (2013).http://dx.doi.org/10.1088/0004-637x/772/1/7.

      [63] S. Abrahamyan et al. Measurement of the Neutron Radius of 208Pb through Parity-Violation in Electron. Phys. Rev. Lett. 108, 112502 (2012) http://dx.doi.org/10.1103/PhysRevLett.108.112502.

      [64] Martin J. T. Milton. A new definition for the mole based on the Avogadro constant: a journey from physics to chemistry. Phil. Trans. R. Soc. A 369, 3993–4003 (2011) (2011)

      [65] Giancarlo D’Agostino ET AL. 30Si Mole Fraction of a Silicon Material Highly Enriched in 28Si Determined by Instrumental Neutron Activation Analysis. Anal. Chem., 87 (11), pp 5716-5722 (2015)http://dx.doi.org/10.1021/acs.analchem.5b00878.

      [66] K.A. Bronnikov et al. On new definitions of SI base units. Why is the “atomic” kilogram preferable? arxiv:1410.7906 (2014)

      [67] P. Fraundorf and Melanie Lipp. A graphite-prism definition for Avogadro’s “integer”. arxiv: 1201.5537v4. (2015)

      [68] Lee Smolin. Trouble with physics. The rise of the string theory, the fall of science. New York: Houghton Mifflin Co. (2006)

      [69] Peter Woit. Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law. London: Jonathan Cape &: New York: Basic Books.(2006)

      [70] Penrose, Roger. The Road to Reality: A Complete Guide to the Laws of the Universe. Knopf. (2005)

      [71] Reiner Hedrich. The Internal and External Problems of String Theory. A Philosophical View. J.Gen.Phil.Sci.38:261-278 (2007)http://dx.doi.org/10.1007/s10838-007-9048-3.

      [72] Edward Witten. What Every Physicist Should Know About String Theory. GR Centennial Celebration, Strings 2015, Bangalore, India. (2015). http://member.ipmu.jp/yuji.tachikawa/stringsmirrors/2015/26-06-2015-Edward-Witten.pdf.




Article ID: 5841
DOI: 10.14419/ijaa.v4i1.5841

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.