FLRW solution in bimetric theory of gravitation
-
2017-10-20 https://doi.org/10.14419/ijaa.v5i2.8168 -
FLRW Model, Bimetric Theory of Gravitation, Cosmology, Isotropy. -
Abstract
We have derived FLRW line-element in Bimetric Theory of Gravitation (BTG) by solving Rosen’s field equations, and it is concluded that the geometry of our model in BTG is agreed with the geometry of FLRW model in GR. It is also realized that for the large value of t, the deceleration parameter q in our model admits the value  which is close to the value  at present epoch predicted by the observations of [44-48].This This shows that our FLRW model in BTG is found to be in an accelerating phase at present epoch which is not the case in GR. Other geometrical and physical aspects to the model are also studied.
-
References
[1] Einstein, A. (1915), Sitzungsber. Preus. Akad. Wiss. Berlin (Math. Phys.) 778. https://doi.org/10.1073/pnas.15.3.168.
[2] Hubble, E. (1929), Proc. Natl. Acad. Sci. U.S.A., 15:168. https://doi.org/10.1073/pnas.15.3.168.
[3] Hubble, E.and Humason, M. L. (1931), Astrophysical Journal, 74: 43. https://doi.org/10.1086/143323.
[4] Friedman, A. (1922), Z. Phy., 10: 377. https://doi.org/10.1007/BF01332580.
[5] Friedman, A. (1924), Zeitschrift für Physik, 21(1): 326. https://doi.org/10.1007/BF01328280.
[6] Robertson, H. P. (1935), Astrophysical Journal 82: 284. https://doi.org/10.1086/143681.
[7] Lemaitre, G (1927), Monthly Notices of the Royal Astronomical Society 91: 483. https://doi.org/10.1093/mnras/91.5.483.
[8] Walker, A. G. (1937), Proc. of the London Math. Soc., 42: 90. https://doi.org/10.1112/plms/s2-42.1.90.
[9] Burd, A. B. and Barrow, J.D. (1988), Nucl. Phys. B, 308: 923. https://doi.org/10.1016/0550-3213(88)90135-6.
[10] Wald, R. (1983), Phys. Rev. D, 28: 2118. https://doi.org/10.1103/PhysRevD.28.2118.
[11] Barrow, J.D. (1987), Phys. Lett. B, 187: 12. https://doi.org/10.1016/0370-2693(87)90063-3.
[12] Ellis, G.F.R. and Madsen, M.S. (1991), Class. Quantum Gravity, 8: 667. https://doi.org/10.1088/0264-9381/8/4/012.
[13] Heusler, M. (1991), Phys. Lett. B, 253: 33. https://doi.org/10.1016/0370-2693(91)91359-4.
[14] Spergel, D. N., et al. (2003), Astrophys. J. Suppl. 148: 175. https://doi.org/10.1086/377226.
[15] Spergel, D. N., et al. (2007), Astrophys. J. Suppl. 170: 377. https://doi.org/10.1086/513700.
[16] Komatsu, E., et al. (2009), Astrophys. J. Suppl. 180: 330. https://doi.org/10.1088/0067-0049/180/2/330.
[17] Komatsu, E., et al. (2011), Astrophys. J. Suppl., 192: 18. https://doi.org/10.1088/0067-0049/192/2/18.
[18] Hinshaw, G., et al. (2013), Astrophys. J. Suppl., 208: 19. https://doi.org/10.1088/0067-0049/208/2/19.
[19] Ade, P. A. R., et al. (2013a), arXiv: 1303.5076.
[20] Ade, P. A. R. et al. (2013b), arXiv: 1303.5082.
[21] Rosen, N. (1973), Gen. Rel. and Grav, 4 (6): 435. https://doi.org/10.1007/BF01215403.
[22] Rosen, N. (1974), Annls of Physics. 84: 455. https://doi.org/10.1016/0003-4916(74)90311-X.
[23] Rosen, N. (1977), Plenum Press, London. 273.
[24] Karade, T. M. (1980), Indian J. Pure-appl. Math., 11 (9): 1202.
[25] Israelit, M. (1981), Gen. Rel. Grav., 13(7): 681. https://doi.org/10.1007/BF00759411.
[26] Yilmaz, H. (1975), Gen. Relativ. Gravit, 6: 269. https://doi.org/10.1007/BF00751571.
[27] Reddy, D.R.K. and Venkateswara Rao, N. (1998), Astrophys. Space Sci., 257: 293. https://doi.org/10.1023/A:1001166619709.
[28] Katore, S.D. and Rane, R. S. (2006), Pramana J. Phys. 67 (2): 237.
[29] Khadekar, G.S. and Tade, S. D. (2007), Astrophys. Space Sci., 310: 47. https://doi.org/10.1007/s10509-007-9410-2.
[30] Borkar, M. S. and Charjan, S. S. (2009), IJAM 22 (3): 445.
[31] Borkar, M. S. and Charjan, S. S. (2010a), J. Ind. Acad. Math 32(1): 147.
[32] Borkar, M. S. and Charjan, S. S. (2010b), an Int. J. AAM 5(1): 96.
[33] Borkar, M. S. and Charjan, S. S. (2010c), an Int. J. AAM 5(2): 563.
[34] Borkar, M. S., et al. (2013), Int. J. Appl. Math. 28(2): 1249.
[35] Borkar, M. S. and Charjan, S. S. (2013), an Int. J. AAM 8(1): 116.
[36] Borkar, M. S. and Gayakwad, P.V. (2013), American J. of Pure Appl. Mathematics 2(1):1. https://doi.org/10.11648/j.pamj.20130201.11.
[37] Borkar, M. S. and Gaikwad, N. P. (2014), Int. J. of Mathematical Sciences, 34 (1):1406.
[38] Borkar, M. S. and Gayakwad, P. V. (2014a), Int. Org. of Scientific Res. J. of Math., 10(3): 28.
[39] Borkar, M. S. and Gayakwad, P.V. (2014b), an Int. J. AAM 9(1): 260.
[40] Borkar, M. S. and Ameen, A. (2015a), IJMPD 24 (2):1550019. https://doi.org/10.1142/S0218271815500194.
[41] Borkar, M. S. and Ameen, A. (2015b), the African Review of phys. 10. 0053: 443.
[42] Borkar, M. S. and Ameen, A. (2017), Astrophysics 60 (2): 242. https://doi.org/10.1007/s10511-017-9479-4.
[43] Gaikwad, N. P., et al. (2011), Chin. Phys. Lett. 28(8): 089803. https://doi.org/10.1088/0256-307X/28/8/089803.
[44] Riess, A.G., et al. (2004), Astrophys. J. 607: 665. https://doi.org/10.1086/383612.
[45] Virey, J. M., et al. (2005), Phys. Rev. D, 72: 061302. https://doi.org/10.1103/PhysRevD.72.061302.
[46] Cunha, C.E., et al. (2009), Mon. Not. R. Astron. Soc., 396: 2379. https://doi.org/10.1111/j.1365-2966.2009.14908.x.
[47] Tripp, R. (1997), Astron.Astrophys. 325: 871.
[48] Sahni, V. (1999), Pramana. 53: 937. https://doi.org/10.1007/s12043-999-0048-1.
[49] Tolman, R. C. (1934), Relativity, Thermodynamics and Cosmology (Oxford University Press, Oxford.
[50] Usmani, A.A., et al. (2008), Mon. Not. R. Astron. Soc., 386: L92. https://doi.org/10.1111/j.1745-3933.2008.00468.x.
[51] Ray, S., et al. (2011), Int J Theor Phys, 50 (9): 2687. https://doi.org/10.1007/s10773-011-0766-2.
[52] Katore, S. D., et al. (2011), Int J Theor Phys, 50 (8): 2477. https://doi.org/10.1007/s10773-011-0736-8.
-
Downloads
-
How to Cite
Borkar, M. S., & Ameen, A. (2017). FLRW solution in bimetric theory of gravitation. International Journal of Advanced Astronomy, 5(2), 117-123. https://doi.org/10.14419/ijaa.v5i2.8168Received date: 2017-07-31
Accepted date: 2017-08-24
Published date: 2017-10-20